
MIT/LCS/TM-437

oON-LINE SCHEDULING
V OF PARALLEL MACHINES
I

DTIC
1 ELECTE

1C20 u

Joel Wein
David P. Williamson

November 1990

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICkTION lb. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2Approved for public release; distribution2b. OECLASSIFICATION/IDOWNGRADING SCHEDULEisulm ed
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM 437 N00014-89-J-1988/NO0014-87-K-825

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Lab for Computer Science, (if applicable) Office of Naval Research/Dept. of Navy

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City,' State, and ZIP Code)

545 Technology Square Information Systems Program
Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD

Bc. ADDRESS (City, Stare, and ZIP Code) 10. SOURCE OF FJNDING NUMBERS
140 ilonBld.PROGRAM PROJECT ITASK WORK UNITArlington v ELEMENT NO. NO. NO ACCESSION NO.

Arlington, VA 222171

11. TITLE (Include Security Classification)

On-Line Scheduling of Parallel Machines

12. PERSONAL AUTHOR(S)

T-1 Win. David P. Williamson
13a. TYPE OF REPORT 113b. TIME COVERED 114DATE RNovember 1990 n D 5 PAGE COUNT7

Technical IFROM To NoEme 199 17OT(Ya ~ AG ON

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)FIELD JGROUP SUB-GROUP on-line algorithms, scheduling algorithsm, parallel
IU I machines, combinatorial optimization.

19. ABSTRACT (Continue on reverse if necessary and identify hv block number)

We study the problem of scheduling jobs on parallel machines in an on-line fashion, where
the processing requirement of a job is not lknown until the job is completed. Despite this
lack of knowledge of the future, we wish to schedule so as to minimize the completion time of
the entire set of jobs. In general, the performance of an on-line algorithm is measured by its
competitive ratio: the worst case ratio of its performance to that of an optimal algorithm with
total prior knowledge. We study two fundamental models for this problem, that of identical
machines, where all the machines run at the same speed, and uniformly related machines,
where the machines run at different speeds. Our results include:

" Matching upper and lower bounds on the competitive ratio for the case of identical
machines.

" Upper and lower bounds that differ by a constant factor for uniformly related machines.
" A lower bound for randomized algorithms for identical machines that nearly matches

the deterministic upper bound.

o Several upper and lower bounds for variations on these models.
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT - 121. ABSTRACT SECURITY CLASSIFICATION

M UNCLASSIFIED/UNLIMITED 0- SAME AS RPT. 0 oTIC USERS Unclassified
'2a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (include Area Code) 22c. OFFICE SYMBOL

Carul .,ico lora (617) 253-5894 1
)O FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

Unclassified

On-line Scheduling of Parallel Machines
(Extended Abstract)

Joel Wein* David P. Williamsont
Department of Mathematics and Laboratory for Computer Science
Laboratory for Computer Science MIT
MIT Cambridge, MA 02139

Cambridge, MA 02139

November 27, 1990

Abstract

We study the problem of scheduling jobs on parallel machines in an on-line fashion, where
the processing requirement of a job is not known until the job is completed. Despite this
lack of knowledge of the future, we wish to schedule so as to minimize the completion time of
the entire set of jobs. In general, the performance of an on-line algorithm is measured by its
competitive ratio: the worst case ratio of its performance to that of an optimal algorithm with
total prior knowledge. We study two fundamental models for this problem, that of identical
machines, where all the machines run at the same speed, and uniformly related machines,
where the machines run at different speeds. Our results include:

" Matching upper and lower bounds on the competitive ratio for the case of identical
machines.'

* Upper and lower bounds that differ by a constant factor for uniformly related machines.

" A lower bound for randomized algorithms for identical machines that nearly matches
the deterministic upper bound,

" Several upper and lower bounds for variations on these models.

Keywords: On-line algorithms, scheduling algorithms, parallel machines, combinatorial op- ow
timization.

pop

0
td 0

ion
*Research partially supported by an ARO graduate fellowship, by NSF PYI award CCR-89-96272, with matching

funds from Sun Microsystems, and UPS, and by DARPA Contract N00014-89-J-1988.
t Partially supported by an NSF graduate fellowship, by DARPA Contracts N00014-89-J-1988 and N00014-87-

K-825, and Air Force Contract AFOSR-89-0271. on/
,."... u~ltyCoal*

) Avail and/or-
)1tt Speola3.

1 Introduction

Recently there has been a great deal of interest in the field of on-line algorithms. An on-line
algorithm produces a reasonable solution to a problem despite the fact that the entire specification
of the problem is only revealed incrementally. On-line algorithms have been developed for a
number of classes of problems, from classic problems in combinatorial optimization [1], [10], [14],
[21], to various problems in data and memory management [13], [20], to the k-server problem
[6], [17]. A very natural and largely untouched area in which to study on-line algorithms is that
of scheduling. in many real-world scheduling situations the scheduler does not begin with full
knowledge of the amount or type of processing required [12]. Despite this lack of knowledge of
the future the scheduler must utilize a strategy that will do as well as possible.

In this paper we study on-line algorithms for scheduling parallel machines. We define a
realistic and theoretically interesting model of on-line scheduling, and bound the performance
of on-line algorithms for several fundamental versions of this problem. This class of problems
is fundamental in combinatorial scheduling theory [15], and has inspired a variety of techniques
that are of general interest in combinatorial optimization [8], [9], [16]. Further, these problems
have important applications to the design of parallel computing systems [4].

The basic model for scheduling parallel machines is as follows. We are given n jobs and m
machines. Each job j has a processing requirement of pj units. Job j can only be processed
by one machine at a time, and a job must be processed in an uninterrupted fashion on one of
the machines. We specify that the machines either are identical, so that processing p units takes
time p on any machine, or the machines are uniformly related, so that each machine i runs at a
certain speed si, and processing p units takes time p/si on machine i. A solution to an instance
of the problem is a schedule that for each job j specifies a time interval on one machine during
which all pi units of job j are processed, while ensuring that no machine processes more than
one job at the same time. If C is the point in time at which job j has finished processing, then
the makespan or length of the schedule is Cmax = maxi Cj.

It is important to define a model of on-line scheduling that realistically captures the scheduler's
lack of knowledge of the data and yet is not so strong as to leave no room for an algorithm to
perform adequately. Traditional off-line models are unrealistic in that all the pi are known in
advance. It would also be unrealistic, however, to force the scheduler to irrevocably assign a job
to a machine before learning something about the size of the job. Therefore, we model on-line
scheduling by assuming that none of the pj are known in advance, but that the scheduler can
restart a job, i.e. cancel it and start it from scratch on another machine. For simplicity's sake,
we assume all the jobs are available at the start time. It is possible to extend our results to the
more general setting where not all jobs are available at the start time; we discuss this extension
to the model in section 7.

On-fine algorithms are traditionally evaluated in terms of their competitive ratio, the worst-
case ratio of their performance to that of an optimal off-line algorithm. For these scheduling
problems, the "performance" of an algorithm on a problem instance is the makespan of the
schedule constructed by that algorithm. Thus the performance of an on-line scheduling algorithm
is characterized by the worst-case ratio of the length of the schedule produced to the length of
the shortest possible schedule.

In this paper we give essentially exact characterizations of the power of on-fine deterministic
schedulers in two fundamental models. Specifically, we prove that a deterministic on-line sched-
uler for identical machines can not achieve a competitive ratio less than 2- 1; by an algorithm of
Graham this is a tight bound [7]. For uniformly related machines we give a scheduling algorithm

I

with competitive ratio 0(log m) and show that no algorithm can have ratio better than !(log m).

We then consider how randomness might help the on-line scheduler. We argue that a ran-
domized scheduler working against an adaptive adversary can do no better than a deterministic
scheduler. Randomization would seem to be much more useful when the adversary is oblivious,
but we show that for identical machines no randomized algorithm can achieve competitive ratio
better than (2 - f1(1/V/'m)). This result is surprisingly strong: since the bound for deterministic
algorithms is (2 - the result shows that randomness does not much improve any algorithm's
competitive ratio. This result is in sharp contrast to other recent work in on-line algorithms, in
which randomness has been shown to significantly increase the performance of the algorithms
[14], [21].

Relatively little work has been done for this model of on-line scheduling. In addition to the
algorithms for identical machines given by Graham [7], the only other work known to the authors
is that of Jaffe [11] and Davis and Jaffe [3]. Davis and Jaffe show that in a ieleicted model
without restarts, an on-line algorithm for scheduling uniformly related machines cannot have
competitive ratio better than f(v/i). Jaffe gives an algorithm for this case with competitive
ratio O(V/m).

Our paper is organized as follows. In section 2 we define our models precisely and establish
some terminology. In section 3, we prove matching lower and upper bounds for identical machines.
Section 4 contains the proof of our lower bound for uniformly related machines, while section 5
demonstrates an on-line algorithm for this case with competitive ratio within a constant factor
of the lower bound. The bounds for randomized algorithms are established in section 6. We
conclude in section 7 by discussing several possible variants of the basic model and giving upper
and lower bounds for some of these variants.

2 Preliminaries

In this section we give precise definitions of a competitive ratio and an adversary before going on
to prove our bounds.

For each instance I of each type of on-line scheduling problem given in the introduction there
is some optimal schedule with a minimum possible makespan. We will denote the length of this
optimal schedule by C;nax(I), or sometimes by Cm . when there is no danger of confusion. There
are exponential-time off-ine algorithms for both problems (the decision version for both identical
and uniformly related machines is NP-complete); therefore we will compare the makespan of a
schedule constructed by an on-line algorithm for instance I to CZ1,.(I).

Let CA.1 (I) be the makespan of a deterministic on-line algorithm A on instance I. Algorithm
A is said to have competitive ratio c (or is said to be c-competitive) if CA.(I) <_ C.Cm, (I)+O(1)
for all problem instances I. If A is a randomized algorithm, then A is said have competitive ratio
c (or is said to be c-competitive) if E[CmA,(I)] c. CT,.(I) + 0(1) for all instances I, where the
expectation is taken over all the random choices of the algorithm A.

As with other on-line algorithms, on-line scheduling algorithms can be viewed as a game
against an adversary who is allowed to determine the information that is revealed incrementally
to the algorithm. The adversary attempts to reveal information in such a way as to force the
competitive iatio to be as large as possible. In the case of on-line scheduling, the adversary is
allowed to determine the size pj of each job j. In this paper, we will consider two possible types
of adversaries: an adaptive adversary, which is allowed to determine the size of jobs pj as the
scheduler is scheduling; and an oblivious adversary, which must fix the size pi of each job before

2

the scheduler begins scheduling.
In sections 3, 4, and 5, we will consider deterministic algorithms playing against adaptive

adversaries. It is not hard to see that these bounds must hold for deterministic algorithms
playing against oblivious adversaries. An oblivious adversary can first run by itself an adaptive
adversary against the deterministic algorithm, and then present the algorithm with the job sizes
chosen by the adaptive adversary. The competitive ratio of the deterministic algorithm playing
against this oblivious adversary must be the same as that obtained by the algorithm against the
adaptive adversary. There is, however, a distinction between the two adversaries for randomized
algorithms. The bounds given in the next three sections do not depend on the determinism of
the scheduling algorithm, and so will hold for randomized algorithms playing against adaptive
adversaries. The final case of randomized algorithms playing against oblivious adversaries is
discussed in section 6.

3 Identical Machines

We begin with a lower bound on the competitive ratio of any on-line algorithm for scheduling
identical machines.

Theorem 3.1 The competitive ratio of any deterministic on-line algorithm for scheduling identical
machines is at least (2 - 1).

Proof: For any m, let n = m(m - 1) + 1. Each of the first m(m - 1) *obs is of size 1, while
the last job is of size m; that is, P, = ... = P,-1 = 1,pn = m. This instance is due to Graham
[7]. The optimal schedule is of length m, and consists of scheduling the last jol -m a machine by
itself, and scheduling m of the single unit jobs on each of the remaining m - machines. The
length of a schedule for this instance is determined by the starting time of the job of size m;
therefore the adversary wishes to make it start as late as possible. Each of the first n - 1 jobs
that the scheduler allows to run for at least one unit of time will be fixed by the adversary to
be jobs of size 1. Given this strategy of the adversary, it is not difficult to see that by time i,
1 < i < m - 1, at most im jobs are either completely processed or currently being processed.
Hence by time m - 1 there must be one job that has not been completely processed and is not
currently being processed. The adversary sets this job to be of size m. If this job starts at time
m - 1 the fastest the schedule can complete is by time 2m - 1, which is 2 - times as long as
the optimal schedule. U

Now we turn to on-line algorithms for this problem. Graham [7] showed that list scheduling
for identical machines always comes within a factor (2 - -L) of the optimal length schedule. In
list scheduling, the scheduler takes any list of jobs and, whenever a machine becomes available,
places the next job on the list on that machine. Since list scheduling does not depend on the sizes
of the jobs, list scheduling is an on-line algorithm. In fact, Graham shows that list scheduling on
identical machines always constructs a schedule no longer than - - -= 1 pJ + (1 - -L)pm.., where

Pmax = max. pj. Since both -, 7j>l P and Pmax are lower bounds on the length of any schedule,
we have the following theorem.

Theorem 3.2 [Graham] There is an on-line algorithm for scheduling identical machines that achieves
competitive ratio (2 -

3

4 The Lower Bound for Uniformly Related Machines

In the case of uniformly related machines the situation becomes a good deal more difficult for the
scheduler. We will show that the adversary can force any deterministic scheduler to construct a
schedule of length fQ(log m) times the length of the optimal schedule. Intuitively, the adversary's
best strategy would be to tie up the faster machines with small jobs, forcing the large jobs either
to run on slower machines or to begin late in the schedule. We first prove that the adversary car
follow a strategy very similar to this. Then we show that this strategy implies a Q(log m) lower
bound.

Before we state the theorem, we introduce some notation. Given a particular schedule, let
t,(j) and tj(j) be the starting and finishing times, respectively, of job j in that schedule. We
let m(j) be the machine that job j completes on, and assume that jobs are sorted so that
Pi _ p2 _ ... <P. We denote the speeds of the machines by sl,---, s,,, with s, > s2... > sm,.
We assume that the speeds of the machines are known to the scheduler.

The following theorem states that the adversary can always force an on-line scheduler to
produce a schedule of a certain form, which loosely understood specifies that larger jobs finish
later in the schedule and that a small job ji only runs on a slower machine than a large job j2 if
thereby it finishes faster than by waiting to start on j2's faster machine.

Theorem 4.1 Let L be the length of the shortest schedule that satisfies the following three condi-
tions:

1. tf(1) _ t1 (2) < ... _ tj(n)

2. For k > 0, if m(j + k) < m(j), then t,(j + k) + Pj/Sm(j+k) > tff(j).

3. For k > 0, if m(j + k) > m(j), then t.(j + k) + pj/s,.(j+k) >_ tf(j).

Then the adversary can always force the scheduler to construct a schedule of length at least L.

Proof: To prove this theorem, it is enough to show that the adversary always has a strategy that
generates a schedule meeting these three conditions. Thus the best the scheduler can do is to
find the optimal such schedule.

We introduce the idea of the adversary committing to a set of jobs. Assume that the adversary
is competing against a scheduler who somehow knows the job sizes in advance, but doesn't know
which size belongs to which job. Certainly if the adversary can force this type of scheduler to do
badly, the adversary can force a scheduler with no knowledge of job sizes to do badly. At time
t, let J(t) be the set of jobs that have not yet completed. The scheduler has a corresponding set
L(t) of the sizes of the jobs which have not yet completed. The adversary is not committed to
any job in J(t) if, at time t, any bijective mapping from J(t) to L(t) is valid given the schedule
thus far. In other words, given the amount of time that the jobs in J(t) have been running, the
scheduler cannot infer any information about which job in J(t) is associated with which size in
L(t). Let T(i, t) be the length of time machine i has been running a job at time t. If we forget
for a moment the possibility that jobs in J(t) may have been run before and cancelled (yielding
some information about their size), then the adversary is not committed to any job in J(t) at
time t if

T(i,t)si < min p., 1 < i < m.
jEJ(t)

4

The adversary's strategy is to avoid being committed to any job in J(t). The adversary can
do this, if, at any point in time t' such that T(i, t')si = minjEJ(t,) pi for some i, the adversary
allows the smallest job in J(t') to complete on machine i. This resets T(i', t') to 0. If the equality
holds true for more than one machine i or more than one job j, then the smallest indexed job j
complctcs on the smallest indexed, machine i and so forth. The adversary continues to complete
jobs until the inequality T(i, t')si < minjEJ(i)pj holds again.

This strategy immediately implies condition 1, since the smallest job will finish first, the next
smallest second, etc. The strategy also takes care of our proviso above about past running times.
If the scheduler runs a job j on machine i and cancels it at time t after it has processed for
k units of time, the scheduler has learned that pi > k • si. This is true for any job in J(t),
however, since otherwise the adversary would have made the smallest job in J(t) finish at or
before time t on machine i. Therefore, cancelling a job does not force the adversary to make any
new commitments.

Now to show that this strategy imphes the second and third conditions. We will prove this
by contradiction. Suppose that for some j, k > 0 m(j + k) < m(j), but t.(j + k) + pj/Sm(j+k) <
tj(j). Then pj :_ [tf(j) - t.(j + k)]sm.(+k). Notice that it must be the case that T(m(j +

k), tf(j))sm(j+k) < pi, or else, since m(j + k) < m(j), job j would have completed on machine
rn(j + k) instead. But T(rr(j + k), tf (j)) = tf (j) - ts(j + k), so that [tf (j) - t(j + k)]m(j+k) <p,

which contradicts the equation above. The third condition is proven similarly. 1

We use the theorem above to derive the fQ(log m) lower bound. To do this. we use a family
of ingtances for uniformly related machines given by Cho and Sahni [2] in a somewhat different
context. Let k = (log2 (3m- 1) + 1)/2. We restrict ourselves to values of m such that k is integral.
The instance has k sets of machines Gi and k sets of jobs Ti, 1 < i < k. Each machine in Gi has
a speed of 2' and each job in Ti has size 2'. Finally, IGI = ITI = 2 2k-2i-1 for 1 < i < k, and
IGkI = ITkI = 1. It is easy to see that Cma x =1.

We would like to show that any schedule for this instance that obeys the conditions of Theorem
4.1 will do poorly. One schedule that does obey the conditions of Theorem 4.1 is the following:
schedule one job from Ti to start on each machine from Gi at time (i - 1)(! + 6), for any 6 > 0.

Then the entire schedule will complete at time (k - l)(! + 6) + 1 = -' + (k - 1)6 (See Figure 1

in the appendix). We will show in a series of lemmas that no other permissible schedule for this
instance can finish faster than this schedule: essentially, scheduling every set of jobs Ti will take
at least one unit of time, and we will not be able to finish Ti any faster than one-half a unit of
time later than the finishing time of Ti- 1.

We will let j!I' and j!nx stand for the highest and lowest indexed jobs in Ti respectively.

Lemma 4.2 In any schedule obeying the conditions of Theorem 4.1, t1 (ja) - t.(j in) > 1 for
any i.

Proof: We will in fact show that maxJiE,[tf(jna2,) _ ta(j)] > 1. This implies the lemma, since
the second and third conditions of Theorem 4.1 together imply that t.(j'fl) _ t.(j) for all jobs
j in T. Suppose that some job j E Ti runs on a machine from Gi or slower. Then for this job j,
tl(j) - t.(j) > 2'/2' = 1. Since by the conditions of Theorem 4.1, t1 (j'az) >_ t1(j), the lemma
statement holds. Now suppose that no job j E T runs on a machine from Gi or slower. Note
that at best, processing all the jobs from Ti on all the machines in Gi+1 and faster must take
time at least the sum of the processing requirements of Ti over the sum of the processing speeds
of processors in G.+, or faster. So the time taken is at least

5

EET i Pi E 2'7i'l

2 2k-i-1
k- 2' . 2 2k-21-1 + 2 k

2 2k-i-1

2 k Ek--2 2 r + 2 k

2 k(2 k- i - 1 - 1) + 2 k

2 2k-i-1

2 2k-i-1
-7 1.

Hence the lemma statement must hold in this case as well. U

Lemma 4.3 In any schedule obeying the conditions of Theorem 4.1, tf(j a) - tf(ji_!") >, for
any i, 2 < i < k.

Proof: Suppose all jobs from Ti run on machines from Gi+1 or faster. As was shown in Lemma
4.2, the jobs must take at least one time unit to complete. Then there must exist some machine
r on which the difference between the finishing time of the last Ti job run on r and the starting
time of the first Ti job run on r is at least 1. Call the last job from T to run on machine r jobj r,latj,,irst S

j ts and the first job from Ti to run on machine r job j" . So
t j r,last) - s r,first)

tf i) -t(i)> 1.

Since r is a machine from Gi+1 or faster, sr > 2i+1 . Hence

tf(jr3 ir t) t(Jr 'ftst) + 2-< sJi) +
Sr -.

Because tf(j _ax) < ti(i jftat), it follows that

t.r.fira t) _ "jmax)

Adding this equation to equation (4) gives us

t r last .a 1

Since tf(j' last) < t1 (j!Ia'), it follows that
I

tf(jrma) - t(j., a,)

Now suppose that there is some job from Ti than runs on a machine from Gi or slower,
call it machine q. We will call this job ji. If job ji runs on the same machine q as job j;rax

tf(mx 2
-

> "max) + .I

then the lemma statement follows since tj(jnaz) > t1 (j) I t(j _ ') + --- _ t1 (32_') + If
imax runs on some machine other than q, then by the second and third conditions of Theorem

4.1, t.(j,) + 11 > t 1(j _t). Since tf(ja') > tf(ji) = ta(ji) + O., it follows that tf(jrax) >_

t1 (JfUax) + 7 2'-.. We know that sq < 2', so the lemma statement follows. 0

6

Lemma 4.4 In any schedule obeying the conditions of Theorem 4.1, tI(jmaz) > j±.

Proof: Add together the k - 1 possible inequalities from Lemma 4.3. This yields the equation

k-1
tf(j-ar) - tf(jma) + tf(j-r) _ tf(j + - k- 1

By collapsing the sum, we obtain

t(jnax) - tf(jmax) k_ -- i

From Lemma 4.2, we know that If(j'a x) - t 8 (jjm') 1, so that t1 (jmax) > 1. Hence we have

k+l
tf (jka

x) > 2-

The lower bound follows directly from these lemmas.

Theorem 4.5 The competitive ratio of any on-line algorithm for uniformly related machines is at
least (log 2(3m-1)+1) + 14 21

5 The Upper Bound for Uniformly Related Machines

In this section we will present an O(log m)-competitive on-line algorithm for scheduling uniformly
related machines.

5.1 A Simple (Off-Line) 2-Relaxed Decision Procedure

First we give a simple (off-line) 2-relaxed decision procedure for uniformly related machines that
will be the basis of our on-line algorithm. The notion of a p-relaxed decision procedure was first

introduced by Hochbaum and Shmoys [8]: given a deadline d, such a procedure either produces

a schedule of length pd or verifies that there exists no schedule of length d.

The 2-relaxed decision procedure is as follows. Put each job into the queue of the slowest

machine Mk such that p, :- Skd. If for some job there is no such machine it is clear that there does
not exist a schedule of length d. Machines now process the jobs in their queues. If a machine's
queue is empty it takes jobs to process from the queue of the first machine that is slower than

it and that has a nonempty queue. If the schedule constructed has Cmax > 2d, output no.

Otherwise we have produced a schedule of length at most 2d.

We must prove that when the procedure outputs no there is no schedule of length d. Consider

a job j that was not finished by time 2d. Since jobs are only processed by machines on which
they take less than d units of time this job must have started after time d; thus it was on the
queue of some machine mk until time d. This implies that until time d machines M 1 ,.. .mk were

all busy processing jobs that could not have completed on machines nk+ ,..mm. Therefore in
a schedule of length d there is no possibility to process all of these jobs and job j. Thus there is

no schedule of length d.

7

5.2 The On-line Algorithm

In this section we will first give an O(log m)-competitive on-line algorithm for a restricted set of

instances of the problem. We will then show through a series of lemmas that any instance can be
reduced to one of these restricted instances while increasing the competitive ratio by at most a

constant factor. Hence we will have an on-line algorithm for all instances with competitive ratio
O(log in).

First we present the main algorithm.

Theorem 5.1 Let I be an instance of the scheduling problem for uniformly related machines. Sup-
pose that for instance I all machine speeds are powers of 2 and that the fastest machine is no more
than m times faster than the slowest machine. Then there is an on-line scheduling algorithm which
produces a schedule no longer than [8(logm) + 1]Cmax(I).

Proof: Since the si are all powers of two, and all the si are within a factor of m of sl, it
immediately follows that there are at most log m different machine speeds. Let M1 = {milsi =
s1}, M 2 = {milsi = s,/2},..., Mogm = {m i lsi = si/ 2 1agm}. We would like to apply the off-line
decision procedure of section 5.1 to this instance. Note that instead of queueing jobs on machines

Ml,..., mm, we can instead queue jobs on sets of machines M1, ..., Mogm.

The off-line decision procedure does not immediately lend itself to an on-line algorithm, since
the criterion it uses to assign jobs to machine queues utilizes knowledge of the job sizes. To
convert this to an on-line algorithm we will initially assign all the jobs to the Mlogm, queue; when

we discover a job could not have completed on a machine in time d it is still possible that it

might be able to complete in time d on a faster machine. Thus we move it to the queue of the

next fastest set of machines and then try again. After at most log m iterations of putting jobs in
the queues of faster machines we will either have discovered that the job can't be processed in
time d or we will have processed it.

A formal description of an on-line relaxed decision procedure is as follows. This procedure
will form the heart of our on-line algorithm. The procedure either outputs no if there is no

schedule of length d or it produces a schedule of length 2d log rn. Note that even if it answers no

the procedure may have completely processed some of the jobs in that time.

Input A set of jobs and a deadline d.

Step 0 Put all jobs into the Mlogm queue.

Step 1 Run the off-line 2-relaxed decision procedure, with the modification that no jobs are

started after time d (that is, when a machine is idle it takes a job to process off of its queue,

or, when its queue is empty, off of the first slower machine that has a non-empty queue;
etc.)

Step 2 1. If all jobs finish niocessing by time 2d we are done.

2. If any machine ia Mi is still processing a job at time 2d then there is no schedule

of length d. Output no; return

3. If any set of machines Mk has a job j in its queue at time d then there is no schedule

of length d. Output no; return

4. If there are jobs that are being processed at time 2d, on machines M,, i > 1, stop
these jobs and put them on the queue of Mi- 1.Go to Step 1.

8

Analysis of procedure

" The length of the schedule or partial schedule produced is no longer than 2dlogrM.

" If the procedure outputs no then there is no schedule of length d. If condition 2 is true then
an M1 machine ran a job for more than d time; therefore this job clearly could not have
been processed in time d on any of the machines, since no other machine runs at a faster
speed. If condition 3 is true, then up until time d all machines in the sets M 1,... Mk must
have been busy processing jobs that could not have been processed in time d on machines
in Mk-1,...,Mlogm. Therefore, machines in M1,...,M could not have processed all of
these jobs and job j as well by time d.

Notice that this procedure relies heavily on our ability to restart jobs.

Our on-line algorithm initially establishes a lower bound A on C" by running an arbitrarily
chosen job on the fastest proct.sor. Let A be the time taken to complete this job; certainly
A < CmX. Next, the on-line algorithm calls the procedure on the set of all jobs with d = A. If
the procedure returns no, then we will call it again with d = 2A and the set of jobs which were
not completely processed in the first iteration. In general, if the ith iteration fails to produce a
schedule, then we will call the procedure again for the (i + 1)st time with d = 2'A and all jobs
that have not yet been completely processed. Observe that if the ith iteration fails to produce a
schedule when called with d = 2'-lA, then it proves that 2'-lA < Cm x . Suppose that we finally
finish processing all jobs in iteration f. Then the total length of the schedule produced is

A + (1 + 2 + .+ 2f-1)(2A log m) _< 21+1Alogm.

Since the procedure failed to produce a schedule on iteration f - 1, we know that 2f- 2 A <

Cm . Therefore the total length of the schedule produced is no greater than (8(log m) + I)Cm,,,.
U

We now present a series of lemmas that show how to reduce any instance of the schedul-
ing problem to an instance of the form required by the algorithm above, while increasing the
competitive ratio by at most a constant factor.

Lemma 5.2 Any instance of the problem can be reduced on-line to one in which all machine speeds
are powers of two, increasing the competitive ratio by a factor of at most 2.

Proof: We effectively round the speeds down to the nearest power of two. When a machine
finishes processing a job it holds on to it long enough so that it seems to have been processed at
the lesser speed. U

Lemma 5.3 Any instance of the problem can be reduced on-line to one in which the speed of the
fastest machine is no more than m times the speed of the slowest. This reduction increases the
competitive ratio by 2.
Proof: Let k be such that J: s > ! F'7= si, and k__- s, < F=l si. By this definition of

k, s, < ms . In time 2C,*,x we can process on-line all but k of the jobs by processing jobs
arbitrarily on machines mi,. . . , Mk until the first moment in time at which at most k jobs have
not yet been completely processed. The amount of time it takes until this point is bounded
above by (E' I pj)/(l T' I si) < 2C;n.x, since none of the k machines is idle. We will only need
machines inl,.. ., mk to process these last k jobs. Thus if we then produce a schedule of length
I for the last k jobs on these machines, the entire schedule will be of length 2C;,. + 1, and the
machine speeds will be as required. U

9

6 Randomized Algorithms

We now consider the degree to which randomness can help an on-line scheduler. As is the case
with many problems in on-line algorithms, there is r jistinction between the two adversary
iUmu '1lc a. r UUized ,huU dul u. u "m6ummLll. Itlb eaSy to bee Uti ItuIL e U1 oUr lower UUIuISU.

in the previous sections depended on the scheduler being deterministic; they just required the
adversary to be able to make decisions while the scheduler was scheduling. Therefore, all of our
lower bounds remain valid for a raridomized scheduler playing against an adaptive adversary.
In thc more realistic model of an oblivious adversary, however, the scheduler becomes slightly
more competitive with the use of randomization. Nevertheless, the improvement is surprisingly
small: we will prove a strong lower bound on the performance of any randomized algorithm for
scheduling identical machines.

Theorem 6.1 Any randomized algorithm for scheduling identical machines has worst case expected
value of at least (2 -

Our strategy to prove this theorem is as follows. We will first define the notion of a reasonable
randomized algorithm for scheduling identical machines. We will then show that for any c-
competitive unreasonable algorithm, there exists a reasonable algorithm that has a competitive
ratio no greater than c and that always chooses the next job to schedule uniformly. Finally, we
will provide an instance for which the competitive ratio of such a strategy has worst case expected
value (2 -

Definition 6.2 A reasonable randomized algorithm for scheduling identical machines is an algorithm
that does not restart any job and does not leave any machine idle as long as there is some job that
has nct yet been started.

Lemma 6.3 For any unreasonable algorithm A aere is a reasonable algorithm A' whose worst-case
expected performance is at least as good as that of A.

Proof: First we argue that the introduction of idle time into a schedule cannot help the scheduler.
Assume that job j is to be started at time t2 on mdchine i which is idle from time ti to t2. New
if job j is available at time t1, it is clearly to the advantage of the scheduler to start job j on
machine i at time ti. If job j is not available at time t, then it is running on another machine
i'. In this case there is no point in restarting job j on machine i; since the two machines are of
identical speed we can switch the future schedules of the two machines without increasing the
total length of the schedule.

Now restarting a job j after it has run for t < pj units of time is equivalent, in terms of the
effect on the length of the schedule, to introducing t units of idle time, and thus does not help
the scheduler either. U

Lemma 6.4 A reasonable randomized algorithm A is equivalent to an algorithm that, whenever a
machine becomes idle, picks one of the unstarted jobs with a certain probability distribution which
may depend on the schedule constructed up to that point.

Proof: Since a reasonable randomized algorithm constructs a schedule with no restarts and no
idle time, it must be the case that it schedules some unstarted job whenever a machine becomes
idle. The probability distribution for its next choice cannot depend on information that the

10

algorithm does not have at that point; thus, it can depend only on the schedule constructed until
that particular choice of a job. N

We will now argue that the adversary can always force the scheduler to do as poorly as it
would have done had it always made its choices according to the uniform distribution.

Lemma 6.5 The competitive ratio of a reasonable randomized algorithm A can be no less than that
of the reasonable algorithm U that always picks the next job to process uniformly from among the
remaining jobs.

Proof: We note that the adversary's strategy can be described as choosing the sizes of the jobs
and then choosing some permutation of the jobs. Suppose the adversary chooses the permutation
randomly and uniformly. Consider then the expected performance t of the randomized algorithm,
taken over the random choices of both the adversary and the algorithm. At any particular point
at which the algorithm chooses a job to schedule from among the remaining jobs, no matter what
probability distribution the algorithm uses, the uniformly random choice of the adversary ensures
that the probability of the algorithm selecting any particular job is uniform over all the remaining
jobs. Thus the expected performance E for algorithm A is the same as that of the reasonable
algorithm U. In reality, the adversary will pick some fixed permutation but if the expected value
over all of the choices of both the adversary and the algorithm is E, the adversary can always
pick some permutation of the jobs such that the expected performance of the algorithm A, taken
over just the choices of the algorithm, is no better than E. Note that by the argument above,
the performance of algorithm U on any permutation will be C. Therefore, the algorithm A can
do no better than the algorithm U that makes choices uniformly. U

We complete the proof of theorem 6.1 by showing that scheduling by choosing the next job
uniformly can do quite poorly.

Lemma 6.6 There is a problem instance for scheduling identical machines on which a uniform choice
of the next job to process produces a schedule with expected length (2 - (1/v/'m))C~ 1 .

Proof: We will consider the problem instance with k jobs of size m ("big" jobs) and m(m - k)
jobs of size 1 ("small" jobs). The optimum length schedule for these jobs is of length n,. The
expected length of the schedule is then m + F, where E, is the expected start time of the last
big job in the schedule. E, will be at least A 1 (m.- k); maximizing this expression over k yields
k = O(vjii) and thus E, = (2 - 2/Vm'i + o(1/V6R))Cm.,, which implies the stated result. S

7 Other Models and Open Problems

We have defined a natural way to model the problem of scheduling in an on-line fashion, and
have given matching or near-matching bounds on the competitive ratios that can be achieved in
two fundamental ca.-es of sc.eduing parallel machines. This work raises a number of interesting
open questions. One direction of interest is to incorporate further elements and constraints into
the basic models of scheduling parallel machines. We discuss here several additions to the model
and their implications for on-line algorithms.
Release Dates: Traditional scheduling models often contain the added constraint that not all
the jobs are available for processing at time 0, but that job j arrives at time ri. In these models
the rj are known in advance; the natural on-line model is that the scheduler does not know that
job j exists until time ri. It is known that list scheduling can be adapted to work with release

11

times [15], and since our lower bounds still apply, list scheduling is an optimally competitive
on-line algorithm for identical machines with release dates.

Our on-line algorithm for uniformly related machines can also be extended to handle release
dates. Our algorithm consisted of a series of phases, each phase having an associated deadline d.
If a iob is released in the nhase with dpadlinp d the algr ithm begn; I _ t -- t

of the next phase (i.e. it is put on the queue of the slowest machine along with all the other
jobs that were released in earlier phases and remain unprocessed). If the algorithm would have
completed all the jobs in the kth phase, with deadline d, then upon completion of the kth phase
it starts a new phase with deadline d and begins processing those jobs that arrived during the
kth phase. It is not hard to see that this modification gives an O(logm) upper bound for this
more general problem.
Preemption: In some scheduling scenarios it is a reasonable assumption that the processing of a
job can be interrupted and restarted on another machine without losing any work; this is referred
to as the preemptive model. In contrast to the nonpreemptive model which we have considered
in this paper, an optimal schedule can be found off-line in po)mial time when preemption is
allowed [181. Interestingly enough, the on-line worst case characterization of both models is the
same.

Theorem 7.1 An on-line algorithm for scheduwing identical machines with preemption allowed has
competitive ratio at least (2 - -) and there is an algorithm that achieves this ratio.

Proof: Graham has showed that list scheduling achieves a competitive ratio of 2 - L for schedul-

ing identical machines with preemption allowed as well. To prove the corresponding lower bound,
consider an instance with n = m+ 1 jobs. The adversary allows the scheduler to begin scheduling,
and waits until either the scheduler preempts a job for the first time, or 1 time unit has passed,
whichever comes first. Call this time t. By time t, at most m jobs can have been started (since
scheduler didn't preempt anything until time t). Let job n be ajob that was not started. At time t,
the adversary sets Pi = , = Pn-1 = t, and sets p, = tm/(rm- 1). The scheduler can clearly com-
plete the entire schedule no sooner than time t + tm/(m - 1). The length of the optimal preemp-
tive schedule is known to be max(pm.x, E'pj/m). In this case max(pmax, Epj/m) = tm/(m- 1).
Therefore the adversary has competitive ratio [t + tm/(m - 1)]/[tm/(m - 1)] = 2 - 1/r. U
Gang Scheduling: In the models of scheduling we have discussed, each job is viewed as requiring
only one processor. A possible extension to the identical machines model would be to view a job
as requiring a specific number of processors, i.e. a job j must run on qj processors simultaneously
for pj units of time. The value qj is called the width of job j. In the literature on multiprocessing
this model has been referred to as gang scheduling, whereby interacting threads of a computation
are required to execute simultaneously [5].

Feitelson and Rudolph [4],[5] argue that it is a realistic assumption that the job sizes are not
known beforehand but that the job widths are. They present several results assuming specific
input distributions. It is clear that our lower bounds for identical machines apply here since they
just use gangs of width 1. We have shown that a simple strategy comes within a factor of 3 -
of optimal; the proof will appear in the full version of the paper.

Theorem 7.2 There exists an on-line algorithm with competitive ratio (3 - 1) for gang scheduling
of identical machines.

Precedence Constraints: A standard addition to the models we have discussed is precedence
constraints, which specify that certain jobs must be processed before others, via a partial order on
the jobs. We note in passing that for identical machines list scheduling can be shown to achieve

12

the same bounds for a problem with precedence constraints [7], so list scheduling remains an
optimally competitive on-line algorithm. When precedence constraints are added to the uniform
non-preemptive model, the best known approximation algorithm, due to Jaffe [11], produces

schedules within an O(v/m) factor of optimal. This algorithm happens to be an on-line algorithm.

Unrelated Machines: We hav2 assumed that the machines are either identical or uniformly
related. A third model that has been studied in the literature is that of unrelated machines,
where a job j runs at speed sij on machine i, and the sij need not be related in any coherent
fashion. Davis and Jaffe give an O(V/-) approximation algorithm for the non-preemptive model
that is on-line but does not take advantage of restarts [3]. In related work with Shmoys, we have
developed an on-line algorithm for the non-preemptive model with competitive factor O(logn)
[19]; the best known lower bound is our lower bound for the uniformly related case.

It would also be interesting to study on-line scheduling algorithms for different realms of
scheduling, such as shop scheduling or single-machine scheduling [15], and/or algorithms that
optimize criteria other than the makespan. There is a tremendous amount of literature on these
different realms, and relatively little of it translates into useful techniques for on-line algorithms.

Acknowledgements

We are grateful to Howard Karloff for suggesting on-line scheduling as a fruitful area of research.
We are also grateful to David Shmoys for suggesting the models and problems in this paper,
an important idea in the upper bound of section 5, and many helpful discussions. Finally, we
thank Nabil Kahale for a useful discussion on probability, and Cliff Stein and Lisa Hellerstein for
comments on a draft of this paper.

References

[1] J. Aslam and A. Dhagat. Online algorithms for 2-coloring hypergraphs via chip games. Unpublished
manuscri[', July 1990.

[2] Y. Cho and S. Sahni. Bounds for list schedules on uniform processors. SIAM Journal on Computing,
9(l):91- 103, February 1980.

[3] E. Davis and J.M. Jaffe. Algorithms for scheduling tasks on unrelated processors Journal of the
ACM, 28:712- 736, 1981.

[4] D.G. Feitelson and L.R. Rudolph. Mapping and scheduling in a shared parallel environment using
distributed hierarchical control. In Proceedings of the 1990 International Conference on Parallel
Processing, August 1990.

[5] D.G. Feitelson and L.R. Rudolph. Wasted resources in gang scheduling. In Proceedings of the 5th
Jerusalem Conference on Information Technology, October 1990.

[6] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. In Proceedings of the 31st Annual
Symposium on Foundations of Computer Science, 1990.

[7] R. L. Graham. Bounds for certain multiprocessor anomalies. Bell System Technical Journal, 45:1563-
1581, 1966.

[8] D.S. Ilochbaum and D.B. Shmoys. Using dual approximation algorithms for scheduling problems:
theoretical and practical results. Journal of the ACM, 34:144-162, 1987.

[9] D.S. ltochbaum and D.B. Shmoys. A polynomial approximation scheme for machine scheduling on
uniform processors: using the dual approximation approach. SIAM Journal on Computing, 17:539-
551, 1988.

13

[10] S. Irani. Coloring inductive graphs on-line. In Proceedings of the 31st Annual Symposium on Foun-
dations of Computer Science, pages 470-479, 1990.

(11] J.M. Jaffe. Efficient scheduling of tasks without full use of processor resources. Theoretical Computer
Science, 12:1-17, 1980.

€1q S1 - ," b I.. . "APCI 1,er- 1-'0 for "1w scheduing. ommunications oi
the ACM, pages 54-60, 1990.

[13] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy caching. Algorithmica,
3:79-119, 1988.

[14] R. Karp, U.V. Vazirani, and V.V. Vazirani. On-line algorithms for bipartite matching. In Proceedings
of the 22st Annual ACM Symposium on Theory of Computing, pages 352-358, 1990.

[15] Eugene L. Lawler, Jan Karel Lenstra, Alexander H.G. Rinooy Kan, and David B. Shmoys. Sequencing
and scheduling: Algorithms and complexity. Technical Report BS-R8909, Centre for Mathematics
and Computer Science, Amsterdam, The Netherlands, 1989. To appear in Handbooks in Operations
Research and Management Science, Volume 4: Logistics of Production and Inventory.

[16] J.K. Lenstra, D.B. Shmoys, and E. Tardos. Approximation algorithms fr scheduling unrelated
parallel machines. Mathematical Programming, 46:259-271, 1990.

[171 M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for on-line problems. In
Proceedings of the 20th Annual A CM Symposium on Theory of Computing, pages 322-333, May 1988.

[18] R. McNaughton. Scheduling with deadlines and loss functions. Management Science, 6:1-12, 1959.

[19] D.B. Shmoys, J. Wein, and D.P. Williamson. An on-line algorithm for scheduling unrelated machines.
Unpublished manuscript.

[20] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules. Communications
of the ACM, 28(2):202-208, 1985.

[21] S. Vishwanathan. Randomized online coloring of graphs. In Proceedings of the 31st Annual Symposium
on Foundations of Computer Science, pages 464-469, 1990.

14

8 Appendix

Time: 0 .+3 1+2b .5(k+1)+(k-1))

Machines: G
k!

GI

Figure 1: Near optimal schedule for example in section 4

15

OFFICIAL DISTRIBUTION LIST

DIRECTOR 2 copies
information Processing rechniques Office
Defense Advanced Research Projects Agency (DARPA)
1400 Wilson Boulevard
Arlington, VA 22209

OFFICE OF NAVAL RESEARCH 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Gary Koop, Code 433

DIRECTOR, CODE 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

DEFENSE TECHNICAL INFORMATION CENTER 12 copies
Cameron Station
Alexandria, VA 22314

NATIONAL SCIENCE FOUNDATION 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

HEAD, CODE 38 1 copy
Research Department
Naval Weapons Center
China Lake, CA 93555

